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ANALYSIS OF FULLY DENELOPED LAMINAR HEAT TMSFER I N  

T H I N  RECTANGULAR CHA."ELS WITH HEATING ON THE 

BROAD WALLS EXCEPT NEAR THE CORNERS* 

by Joseph M. Savino, Robert Siegel ,  and Edward C. B i t t ne r  

Lewis Research Center 

SUMMARY 

An ana lys i s  i s  presented of convective heat  t r a n s f e r  i n  t h i n  rectangular  
channels such as those commonly found i n  nuclear-reactor f u e l  assemblies. The 
ve loc i ty  and temperature p r o f i l e s  are both assumed t o  be ful ly  developed. 
Heating takes  place i n  the  fueled region located on t h e  broad channel s ides ,  
but the  f u e l  extends only p a r t  way t o  t h e  corners.  The shor t  s ides  and por- 
t i o n s  of t he  broad s ides  t h a t  a r e  not fueled a r e  assumed insulated.  The wall 
temperature d i s t r ibu t ions  a re  shown t o  be s t rongly dependent on t h e  spacing be- 
tween the  heated region and the  corners. 
temperature s h i f t s  r ap id ly  from t h e  corner t o  t h e  center  of t he  broad s ide  as 
t h i s  spacing i s  increased from zero t o  only one-half t h e  dis tance between t h e  
broad s ides .  With a cosine heating d i s t r i b u t i o n  where t h e  peak f l u x  i s  at  t h e  
f u e l  edges, t h e  w a l l  temperature gradients  a r e  more severe than f o r  t h e  uniform 
heat ing case. Tables of temperature d i s t r ibu t ions  i n  t h e  f l u i d  a r e  a l s o  given. 

For uniform heat ing t h e  maximum w a l l  

INTRODUCTION 

Many nuclear r eac to r s  u t i l i z e  assemblies of f l a t  or s l i g h t l y  curved f u e l  
p la tes .  For example, i n  f igu re  1 a cross-sec t iona l  view is  shown of the  f u e l  
assembly used i n  the  NASA Plum Brook Reactor. 
mately 97 percent of t h e  heat  i s  generated i n  the fueled por t ion  of t h e  p l a t e s  
and only 3 percent i n  t h e  unfueled port ions and s ide  p l a t e s  (unpublished Lewis  
report  by K. J. Baumeister and H. J. Re i l ly ) .  Cooling i s  accomplished by pass- 
ing high ve loc i ty  w a t e r ,  which a l so  serves as t h e  moderator, through t h e  
channels between t h e  p la tes .  The l o c a l  plate-temperature var ia t ions  are in-  
fluenced by f ac to r s  such as l o c a l  flow ve loc i ty ,  d i s t r i b u t i o n  of hea t  genera- 
t i o n  over t h e  fueled a rea ,  dis tance from t h e  i n l e t ,  heat  conduction i n  t h e  
channel w a l l ,  and space between t h e  edge of t h e  f u e l  loading and t h e  corner. 
A problem of pa r t i cu la r  concern i s  t h e  heat  t r a n s f e r  i n  t h e  channel corners.  
I n  th i s  region accurate  ca lcu la t ions  of t h e  w a l l  temperatures are very d i f f i -  
c u l t  f o r  severa l  reasons. If t h e  flow i s  turbulen t ,  t h e  low ve loc i t i e s  i n  t h e  
corners m a y  give r i s e  t o  a l a rge r  l a m i n a r  region than  e x i s t s  i n  an  ordinary 
laminar sublayer, and t h e  extent  of t h e  laminar region i s  d i f f i c u l t  t o  define.  

I n  such an assembly approxi- 

* Presented at t h e  American I n s t i t u t e  of Chemical Engineers Symposium on 
Nuclear Engineering H e a t  Transfer, Chicago, Ill., Dec. 1962. 
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Figure 1. - Cross section of the fuel assemblies used in the NASA 
Plum Brook Reactor. (All dimensions i n  inches. 1 

Away from t h e  walls i n  t h e  turbulent  
core, secondary flows exist, and lit- 
t l e  i s  known about t h e i r  influence on 
t h e  heat t r a n s f e r .  The nominal spac- 
ing between t h e  edge of t h e  f u e l  
loading and t h e  corner is  var iab le  
because of manufacturing tolerance 
e r ro r s .  The problem i s  fu r the r  com- 
p l i ca t ed  by the  heat conduction i n  
t h e  f u e l  p l a t e s  and i n  t h e  support- 
ing s ide  w a l l s .  Thus, any compu- 
t a t i o n s  can be a t  bes t  only approxi- 
mate. 

Convective heat t r a n s f e r  ins ide  
noncircular ducts has been s tudied by 
a number of inves t iga tors ,  but only 
t h e  literature t h a t  has d i r e c t  appl i -  
ca t ion  t o  t h e  subject  of t h i s  paper 
w i l l  be mentioned herein.  Levy, 
Fuller, and N i e m i  (ref. 1) experimen- 
t a l l y  s tudied turbulent  forced- 
convection heat t r ans fe r  and bo i l ing  
burnout f o r  water flowing through 
rectangular  passages of aspect r a t i o  
20 t h a t  were e l e c t r i c a l l y  heated on 
a l l  s ides .  The wall temperatures at 
t h e  center  of t h e  shor t  s ides  were 
considerably higher than those on the  

broad s ides .  
t he  highest  temperatures even with heat conduction present i n  t h e  walls. 

The corner temperatures were not measured, but they may have been 

Sparrow and Siege1 (ref. 2 )  used va r i a t iona l  methods t o  analyze laminar 
heat  t r a n s f e r  i n  a rectangular  channel of aspect r a t i o  10 with uniform heat ing 
on e i t h e r  a l l  four  s ides  or on only the  two broad s ides .  I n  both cases the  
highest  w a l l  temperatures occurred i n  t h e  corners,  and the  wall temperature 
va r i a t ions  r e s u l t i n g  from heat ing on four  s ides  were much greater than t h e  t e m -  
perature  var ia t ions  f o r  heat ing on o n l y t h e  two broad s ides .  A d i r e c t  ana lys i s  
f o r  uniform heating on a l l  four  s ides  was ca r r i ed  out by Cheng (ref.  3) and 
evaluated numerically f o r  aspect r a t i o s  from 1 t o  4. It is s ign i f i can t  t o  note 
t h a t  t he  laminar  analyses gave w a l l  temperatures t h a t  were qua l i t a t ive ly  simi- 
lar t o  those reported i n  reference 1 f o r  turbulent  flow. 

Eckert and Irvine ( r e f .  4 )  invest igated t h e  flow i n  channels with isosce- 
les t r iangular  cross  sec t ions  and found t h a t ,  when the  core w a s  tu rbulen t ,  
laminar flow pers i s ted  far from t h e  i n l e t  i n  t h e  apex angle. They a l s o  exper- 
imented with the  heat t r ans fe r  ins ide  an e l e c t r i c a l l y  heated t r iangular  ( i sos -  
ce les  with 11-48' apex angle)  duct ( r e f .  5) and measured apex wall tempera- 
t u re s  t h a t  w e r e  much higher than a t  the  other  two corners. I n  t h e  experiment, 
t h e  heat conduction i n  t h e  walls reduced the  apex temperature below t h a t  which 
would exist  f o r  nonconducting w a l l s .  The measured wall temperatures were com- 
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pared with t h e o r e t i c a l  values calculated by Eckert, I rvine,  and Yen ( r e f .  6 )  
f o r  l a m i n a r  heat t r a n s f e r  i n  the  same shape passage with no conduction i n  the  
w a l l s .  Again the  laminar analysis  gave w a l l  temperatures t h a t  were i n  qual i ta-  
t i v e  agreement with the  measured values of the turbulent flow case. The l a m i -  
nar r e s u l t s ,  however, predicted wall temperatures that  were much greater  i n  the 
corners. 

Baumeister and R e i l l y  studied a n a l y t i c a l l y  the  heat t r a n s f e r  i n  the  corner 
of a rectangular reac tor  cooling passage f o r  several  s p e c i f i c  cases using ty-pi- 
c a l  volume heating r a t e s  i n  t h e  fueled and unfueled sect ions of the f u e l  p la te  
and s ide w a l l .  They took i n t o  account conduction i n  the w a l l s ,  the  var ia t ion  
i n  the  distance between the edge of t h e  f u e l  loading and t h e  corner, and the  
qua l i ty  of the  brazed bond between t h e  f u e l  and s ide p la tes .  
however, a constant convective heat- t ransfer  coeff ic ient  across each w a l l  sur- 
face inside t h e  channel, whereas i n  r e a l i t y  the  coef f ic ien t  var ies  i n  t h e  cor- 
ner. With t h i s  assumption t h e  lowest w a l l  temperature w a s  generally a t  the  
corners except f o r  t h e  case of a poorly brazed j o i n t .  Results were a l s o  calcu- 
l a t e d  f o r  the  case of uniform heating i n  a l l  t h e  w a l l s  i n  order t o  compare them 
with the  r e s u l t s  from reference 1. For t h e  preceding condition the  calculated 
w a l l  temperatures w e r e  highest  i n  t h e  corners and were considerably grea te r  
than those f o r  the  case of heating i n  only the  fueled p la tes .  

They assumed, 

This report  i s  concerned with a more de ta i led  study of the  influence of 
the  spacing between the  edge of the  f u e l  loading and the  corners of a f l a t  rec-  
tangular duct on t h e  wall temperature d is t r ibu t ion .  A l s o  included i n  the  
analysis  i s  t h e  e f f e c t  of nonuniform heating i n  the fueled region, which re- 
s u l t s  from a var ia t ion  i n  the  neutron f l u x  over the width of the broad s ides  
and from s e l f  shielding. The f l u x  i s  sometimes higher near t h e  channel corners 
due t o  the r e f l e c t i o n  of neutrons from adjacent r e f l e c t o r  components. Rectan- 
gular ducts a r e  t r e a t e d  with aspect r a t i o s  of 10 and 20. The flow is  taken t o  
be laminar, and both the flow and heat t r a n s f e r  are assumed t o  be f u l l y  devel- 
oped. The heat generation takes  place only i n  the  fueled port'ion of t h e  broad 
s ides .  The unfueled remainder of the broad s ides  and the  short  s ides  a r e  as- 
sumed t o  be p e r f e c t l y  insulated.  The s m a l l  amounts of gamma and neutron heat-  
ing t h a t  occur i n  them a r e  neglected. N o  simplifying assumptions a r e  made w i t h  
reference t o  the convective heat- t ransfer  coef f ic ien t ,  which var ies  around the 
periphery of the  channel. The wall and t h e  l o c a l  f l u i d  temperatures are com- 
puted f o r  various spacings between the edge of t h e  f u e l  loading and the cor- 
ners.  

a 

b 

C 

C 

P C 

SYMBOLS 

half- length of short  s ides  of rectangular duct 

half- length of broad sides of rectangular duct 

Jacobi matrix associated with R and i t s  decomposition 

half- length of heated width on broad s ides  

spec i f ic  heat of f l u i d  at  constant pressure 
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d 

dA 

ds 

k 

N 

n 

P 

P 

Q 

Tb 

T W  

U 

- 
U 

v i  
X 

X 

Y 

Y 

Z 

n 

Y 

unheated width on broad s ides  between corner and edge of f u e l ,  b-c 

element of m e a  

element of length 

thermal conductivity of f l u i d  

number of increments on s ide  of one-fourth of channel cross  sec t ion  

number of increments t h a t  a r e  heated, e/& (except where used as a summa- 
t i o n  index) . .  

amplitude i n  cosine va r i a t ion  of heat flux 

s t a t i c  pressure 

hea t - t ransfer  rate t o  f l u i d  per un i t  channel length 

l o c a l  w a l l  heat addi t ion  per un i t  area 

t emperat ure 

bulk f l u i d  temperature 

l o c a l  w a l l  temperature 

l o c a l  f l u i d  ve loc i ty  

average f l u i d  ve loc i ty  

eigenvectors of C 

dimensionless short-s ide coordinate, x/a 

coordinate measured along short  s ide  

dis tance between nodes i n  x-direct ion 

dimensionless long-side coordinate, y/b 

coordinate measured along broad s ide  

dis tance between nodes i n  y-direct ion 

coordinate measured along duct length 

dimensionless dis tance between nodes i n  both x- and y-direct ions 

aspect r a t i o  of rectangular  duct,  b/a 
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dimensionless temperature, 

dimensionless bulk temperature 

solut ion of Laplace equation 

solut ion of Poisson equation 

temperature so lu t ion  of d i sc re t e  problem 

mth approximation for 0 i n  i t e r a t i v e  so lu t ion  

eigenvalues of C 

absolute v i scos i ty  

outward d i rec ted  normal t o  %he boundary 

f l u i d  densi ty  

overrelaxation parameter 

optimum value f o r  w 

f 

- 

ANALYSIS 

The f l a t  rectangular duct under consideration i s  shown i n  figure 2 along 
w i t h  t he  coordinate system. The p r inc ipa l  assumptions are (1) per iphera l  heat 

conduction i n  the  walls i s  
not accounted f o r ;  hence, 
t h e  r e s u l t s  are for the  
l imi t ing  case where t h e  
w a l l s  a r e  nonconducting; 
( 2 )  f l u i d  proper t ies  a r e  
constant;  (3) both t h e  ve- 

insulated l o c i t y  and temperature d i s -  
surfaces t r i bu t ions  a r e  f u l l y  devel- 

oped; and ( 4 )  t h e  f l o w  i s  
laminar. 

The heat generated i n  
Figure 2. - Coordinate system for thin rectangular channel. t h e  w a l l  i s  t r ans fe r r ed  t o  

the  flowing coolant,  where 
it i s  simultaneously convected downstream and diffused throughout t h e  cross  
sect ion.  The r e su l t an t  f l u i d  and wall temperature d i s t r ibu t ions  depend on t h e  
va r i a t ion  of t h e  coolant ve loc i ty  over the  cross  section; hence, t h e  energy 
equation f o r  t h e  temperature d i s t r i b u t i o n  cannot be t r e a t e d  u n t i l  t h e  veloci-  
t i e s  are specif ied.  Since the f l u i d  proper t ies  a r e  assumed t o  be independent 
of temperature, t h e  v e l o c i t i e s  can be determined before t h e  energy equation i s  
considered. 
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Velocity Dis t r ibu t ion  

For steady f u l l y  developed laminar flow the  momentum equations reduce t o  
a s ingle  r e l a t i o n  between t h e  pressure gradient i n  t h e  a x i a l  d i r ec t ion  and t h e  
laminar shear forces :  

The so lu t ion  f o r  
( ref .  7 ) ,  and consequently, only t h e  f i n a l  r e s u l t  w i l l  be given herein.  
f i n a l  r e s u l t  has been expressed i n  terms of dimensionless var iab les  and has 
been rearranged i n t o  a form espec ia l ly  su i t ab le  f o r  machine computations: 

u(x,y) i s  r e a d i l y  ava i lab le ,  f o r  example, i n  Knudsen and Katz 
The 

U 

U 
- - 

Energy Equation 

When energy conservation i s  applied f o r  s teady heat  t r a n s f e r  t o  flow with 
constant f l u i d  proper t ies  and no viscous d iss ipa t ion ,  t he  governing d i f fe ren-  
t i a l  equation i s  

Equation (3) i s  fu r the r  s implif ied by t h e  addi t iona l  conditions imposed on t h e  
problem. 
developed temperature p r o f i l e s ,  an ove ra l l  hea t  balance leads t o  the  r e s u l t  
t h a t  t he  a x i a l  temperature gradient i s  constant,  t h a t  i s ,  

Under t h e  assumptions of constant heat ing per u n i t  length and f u l l y  

- -  - 0  aT Q a2T 
aZ = pcpE4ab' az2 

Subs t i tu t ing  i n t o  equation (3) y ie lds  

Equation ( 4 )  , with t h e  ve loc i ty  d i s t r i b u t i o n  equation ( 2 )  subs t i tu ted  i n t o  

6 



it, i s  t o  be solved subject t o  the  appropriate boundary conditions. Since the  
ve loc i ty  and temperature d i s t r i b u t i o n s  are symmetrical about both center planes 
(x  = 0, y = 0) ,  only one quarter of the  cross  sect ion need be t r e a t e d  with sym- 
metry imposed along t h e  center l ines .  Along the  broad s ides  a heat f l u x  i s  im-  
posed between y = kc, and the  remainder of the  broad s ides  and the  short  s ides  
are assumed t o  be p e r f e c t l y  insulated.  The heat-f lux var ia t ion  i n  the fueled 
region i s  assumed t o  be of t h e  form 

q =  (1 - P cos "") 2c 
4 c ( l -  Z) 

where P i s  a pos i t ive  constant. The q var ies  from i t s  lowest value at  the  
center of the  broad s ide  ( y  = 0)  t o  i t s  maximum a t  
of the f u e l  loading. Equation (5) has been arranged so  t h a t  Q i s  t h e  t o t a l  
heat input per un i t  length of channel, t h a t  i s ,  

y = e ,  which i s  a t  the  edge 

When P = 0 we have t h e  l imi t ing  case of uniform heat f l u x  i n  the  fueled r e -  
gion so t h a t  Q = 4cq. For the  r e s u l t s  given i n  the sect ion DISCUSSION OF 
RESULTS the  t o t a l  heat input per un i t  channel length Q i s  always held con- 
s tan t ;  consequently, as the  width c of the  f u e l  i s  decreased, the  l o c a l  q 
has t o  be proportionately increased. 
the  cross sect ion can be summarized as 

The boundary conditions f o r  a quarter of 

a = O  dT 
Y 7 y = O , b ;  O l x l a  

Q(1  - P cos E) ZC 
x = a ; O < y < c  3T 

ax= 4ck(1 - $) 
aT -J-=o X J x = a ;  c < y < b  

A s  shown by Cheng (ref.  3),  the  a n a l y t i c a l  solut ion of equation ( 4 )  be- 
comes qui te  involved, even when the  simpler boundary condition of uniform heat-  
ing around the  periphery i s  imposed. The present condition, which has a d i s -  
cont inui ty  i n  w a l l  heating along the  broad s ide  a t  t h e  edge of the  fueled r e -  
gion, adds addi t iona l  complexity; and, hence, it was decided t o  use a combined 
numerical and a n a l y t i c a l  solut ion procedure. 

7 
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Superposition of Solutions 

The energy equation (4 )  i s  wr i t t en  i n  t e r m s  of t h e  dimensionless tempera- 
t u r e  8 

Let 8 be composed of two so lu t ions  

e = e  + e  P L  

where Bp s a t i s f i e s  t h e  Poisson equation 

2 1 u  v e  = - -  
P ab u 

and BL s a t i s f i e s  t h e  Laplace equation 

v e L = o  2 

( 7 )  

The boundary conditions f o r  equations (8) and ( 9 )  have t o  be specif ied.  
1 u  

equation (8) contains t h e  convective term - - ab ; ' 
€Ip 

accomplished by imposing a uniform heat addi t ion  q = - 4b ' 
of t h e  broad s ides .  The shor t  s ides  a re  l e f t  insulated.  The boundary condi- 
t i o n s  f o r  Elp a r e  then 

Since 

t h e  heat addi t ion  f o r  t he  

so lu t ion  w i l l  have t o  equal  t h e  t o t a l  heat  input t o  t h e  channel. Tkis is  

over the  e n t i r e  width 

a = O  Y y = O , b ;  O l x l a  

a = O  X 

ae, 1 
a x = b  

x = O ;  O < y < b  

x = a ;  O s y l b  

The conditions on QL must be such t h a t  when they  a r e  added t o  equations 
(sa) t h e  conditions i n  equations ( 6 )  are obtained. Hence, for eL we have 
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I y = O , b ;  O < x < a  

ax= 

1 a x = - <  

~ = 0 ; 0 l y < b  

Since equation ( 9 )  does not contain a convective term, t h e  net  heat addi t ion 
through the  broad w a l l s  as specif ied by (sa) must be zero, as is  shown by com- 
puting the  t o t a l  heat addi t ion along the  boundary x = a: 

f (1 - P cos g \ d v  

Hence, t h e  solut ion t o  equations (4a) and ( 6 )  has been reduced t o  t h e  sum of a 
simpler forced convection solut ion with uniform heating on t h e  broad w a l l s  
(Poisson's eq. ( 8 ) )  and a pure conduction solut ion (Laplace's eq. ( 9 ) )  with 
conditions (eq. (sa)) imposed. T h i s  method of solut ion i s  v a l i d  f o r  any a r b i -  
t r a r y  w a l l  heat f l u x  d i s t r i b u t i o n .  For each aspect r a t i o  y only one Poisson 
temperature d i s t r i b u t i o n  i s  needed, and t o  t h i s  i s  added a solut ion of 
Laplace's equation t o  account f o r  each heat f l u x  var ia t ion .  

Solution f o r  OP 

The solut ion f o r  €+ could be obtained a n a l y t i c a l l y  i n  a manner similar 
t o  the  one used i n  reference 3. However, t h e  form of the solut ion becomes 
qui te  involved; and, hence, it was  decided t o  use a numerical procedure f o r  
t h i s  p a t  of t h e  problem. The energy equation was expressed i n  f i n i t e  differ-  
ence form, which l e d  t o  a matrix of unknown temperatures at  points  d i s t r i b u t e d  
over the  channel cross section. The matrix w a s  solved with an IBM 704 computer 
by using an impl ic i t  l i n e  i t e r a t i o n  technique. The d e t a i l s  of t h e  numerical 
procedure are given i n  the appendix. This procedure can a l s o  be used t o  solve 
the o r i g i n a l  problem di rec t lybecause  the conditions i n  equations ( 6 )  a r e  only 
very s l i g h t l y  more complicated than those i n  equations (8a). 
solut ions were obtained numerically t o  serve as a check on t h e  superposit ion 
results. The solut ion for QP can a l so  be obtained approximately by a var ia -  
t iona lmethod as shown i n  reference 2, where r e s u l t s  a r e  given f o r  an aspect 

Some complete 
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-0.0591 
-.0583 
-.0561 
-.0523 
-.0472 
-.0408 
-.0332 
-.0247 

r a t i o  of 10. Because t h e  Bp so lu t ions  form a b a s i s  f o r  t h e  superposit ion 
method t h a t  can be appl ied t o  problems of a r b i t r a r y  heat f l ux ,  t he  
values a r e  given i n  t a b l e  I. 

Qp - Bp,b 

-0.0281 
-.0274 
-.0251 
-.0213 
-.0162 
-.00980 
-.00226 
+.00624 

TABLE I. - DIMENSIONLESS TEMPEHATURE DISTRIHUTlONS FOR UNIFORM HEATING OVER ENTIRE WIDTH OF BROAD SIDES 

0.0513 
.0520 
.OS63 
.OS80 
.0631 
.0695 
.0770 
.0855 
.0947 
.104 
.lo8 
.110 
.112 
.I14 

( a )  Aspect  r a t i o ,  b/a, 10 

Dimens ion le s s  t emyera tu re ,  Bp - Bp,b 

Dimens ion le s s  loris-side c o o r d i n a t e ,  Y = y/b 

0.3 1 0.4 I 0.5 I 0.6 I 0.7 1 0.8 

0.101 
.lo2 
. lo4 
. lo7  
.112 
.119 
.126 
.134 
.143 
.153 
,157 
,159 
,161 
.163 

- 
D i -  e n s i  o n l e s s  

s h o r t - s i d e  
c o o r d i n a t e ,  
x = x/a 

- 
0.0 
.1 
.2 
.3 
. a  
.5 
.6  
.7 
.a 
.9 
.94 
.96 
.98 

1.00 . 

1.170 
.171  
.173 
.176 
.181 
.186 
.193 
.200 
.209 
.218 
.222 
.224 
.226 
.228 

- 

- 
0 

-0.111 
-.111 
- . lo8 
- . lo5 
-.0995 
-.0931 
-.0856 
-.0771 
-.0679 
-.OS81 
-.Os41 
-.os21 
-.0501 -. 0481 

__ 
- 

0 

-0.112 
-. 112 
-.111 
- . l o 9  -. 106 
- .lo3 
-.0993 -. 0951  -. 090s 
-.0856 -. 0837 
-.0827 
-.OB17 
-.OB07 

0.178 
.179 
.180 
.183 
,188 
.193 
.199 
.207 
.215 
.274 
.e28 
.230 
,252 
.234 

0.9 

0.152 
. E 3  
.155 
.158 
.163 
.169 
.176 
. l a 4  
.193 
.202 
.206 
.208 
.210 
.a2 

0.9 

0.160 
.I60 
.161 
.163 
.166 

-.0155 
-.0057L 
-.00175 
+.000230 
+.00223 
+.00423 

1.94 10.96 

+.0155 
f.0252 
f . 0292  
+.0312 
f .0332 
f .0352 

). 98 

j.183 
. l e a  
.186 
.186 
.193 
.198 
.204 
.211 
.219 
.226 
.e32 
.234 
.236 
.238 

0.98 

1.202 
.203 
.20a 
,205 
.207 
.'?lo 
.213 

. 1 6 ?  , ,192 

,177 , .199 ,209 
,181 ~ ,204 ,213 
.186 .206 .216 
. l a 8  ,210 .220 

,173 I .195 

0.1 

.o. 108 
- ,108 
- .lo5 
-.lo2 
-.0964 
- .0900 
-.0825 
-.0740 
-.0647 
-.0550 
-.0510 
-.Oh90 
-.0470 
- .O45O 

0.1 

0.109 
- .lo8 
- . l o7  
- .lo: 
- .lo3 -. 0997 
-. 0959 
-.0917 
- .0871  -. 0823 -. 0803 
-.0793 
-.0783 
- .0773 

,217 
.221 
.225 
.?27 

0.2 

0.0989 
-.0981 
-.0959 
- .0921 
-.0870 
-.OB06 
-.0730 
-.0645 
-.0553 
-.0455 
-.0416 
-.0396 
-.0376 
-.0356 

0.2 

0.0987 
-.0983 
-.0971 
-. 0953 -. 0928 
-.0896 
- .OB58 
-.081E 
-.0770 -. 0722 -. 0702 
-.0692 -. 0682 
-.0672 

. . 00 

).1e5 
.186 
.188 
. 191  
.195 
.200 
.206 
.213 
.221 
.230 
.233 
.235 
.237 
.239 

1.00 

1.207 
.207 
.208 
.209 
.211 
.21r 
.217 

. ??4 

.2?9 

.251 

.232  

.233 

.254 

,220 

0.0827 -. 0819 
- . c l i A B  
-.0759 
-.0708 
-.0644 
-.056L 
- . O d e 3  
-.0391 
-.0293 
-.0251 
-.0234 
-.0214 
-.0194 

O"OO8S1 
.00928 
.0116 
.0153 
.0204 
.0268 
.0344 
.Oh29 
.0521 
.0616 
.0658 
.0678 
.Ofi98 
.0718 

( b )  Aspect  ratio, b/a, 20  

Dimens ion le s s  t empera tu re ,  B p  - Bp,b 

Di- -!.-;c: I,'.:, lc>r.:-.:.J. , ,<O! . , : 'm ' " r ,  Y = y/t 

0.8 

0.103 
. lo4  
. l o -  
.101 

x = x/a 
0.3 

0.0818 
-.0814 
-.0803 
- .07Bt  
-.07C3 
- .0727 
- .0690 
-.064@ -. 06oL' 
-.Os53 
-.OE34 
-.OS24 
-.0514 
-.Ob04 

0.4 

-0.0582 
-.0579 
-.0>67 
-.0549 
-.OC23 
-.0492 
-.ont.4 
-.0412 
-.0366 
-.0318 
-.0298 
-.0233 
-.0278 
- . o x 9  

0.5 

-0.OE79 
-.0?76 -. 0264 -. 0246 -. 0220 
-.0139 
-.0151 
- .c log  
-.00G3? 
-.OC146 
+.00052: 
t .00152 
+ . OO?! 2 
+ .003L? 

0.6 

0.00910 . O W 4 5  

0.94 

.163 

. l 8 3  
-184 . l e 6  
.189 

0.96 

0.194 
.194 
.195 
,197 
.199 
,202 
.205 

0.7 

3.0:,29 
.055.? 
. O L 4 4  
. O : G i  
.058i. 
.OG .5 
.O6 7 . 06 5 
. 0 7 4 ,  
,0784 
.0513 

0 . 0  
.1 
.2 
.3 
. a  
.5 
.6  
.7 
.8 
.9 
.94  
.96 
.98 

1.00 

.Ill06 . C 1  d~ 

.01;10 

.01:2 

.0219 
,0221 
,0307 
.0356 
.03'6 

.109 

.11; 

. 1 1 G  

. lXi  

.12> 

.13c 

.13? 

.133 

.155 , 

Solution f o r  QL 

w a s  found ana ly t i ca l ly  by using a product so lu t ion  The so lu t ion  f o r  8, 
LI 

of the  form 
M c eL = 

m=1,2,3,.-. 

This equation already s a t i s f i e s  t he  zero der iva t ive  boundary conditions i n  t h e  
f i r s t  two l i n e s  of equations (sa).  To s a t i s f y  t h e  conditions a t  x = a equa- 
t i o n  (10) i s  d i f f e ren t i a t ed  and evaluated a t  x = a 

To obtain the  coef f ic ien ts  
s e r i e s .  This expansion gives 

&, the  boundary condition i s  expanded i n  a Fourier 

10 



Subs t i tu t ing  f o r  (a@x),, r e s u l t s  i n  

which y ie lds  

Equation (13) i s  inser ted  i n t o  equation (10) t o  obtain 

Bulk Temperature 

QL' 

After t h e  so lu t ion  f o r  8 has been found, t h e  b u l -  tempera-we Qb i s  
computed so t h a t  t h e  r e s u l t s  can be presented i n  the  general  dimensionless form 
8 - Ob. The bulk temperature i s  found from the  de f in i t i on  

From the superposit ion of so lu t ions  8 
t h i s  i s  subs t i tu ted  in to  equation (14), 8b = 8p,b + e 
t h e  desired so lu t ion  can be wr i t t en  as 

i s  given by 8 = QP + QL, and a f t e r  
i s  obtained. Then LYb 

The values of 8p,b were obtained numerically, and values of 8p - 8p,b are 

11 
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remains t o  be computed, which could be 

Equation (8) i s  

L,b 
given i n  table I. The value of 8 
done by subs t i t u t ing  equations ( 2 )  and (10) i n t o  equation (14) and carrying out 
t h e  in tegra t ion ,  but a much simpler procedure i s  as follows. 
solved for u/G and subs t i t u t ed  i n t o  equation (14). The bulk temperature can 
then be wr i t t en  as 

By using t h e  second form of Green's theorem, equation (16) can be converted t o  

where t h e  quan t i t i e s  a@,/& and a0,/av are t h e  normal der iva t ives  of eP 
and BL and are known over t h e  boundary I7 from equations (sa) and (sa). 

2 Since V BL = 0 over ther.region R, t h e  second i n t e g r a l  is zero. Then 

The first i n t e g r a l  i s  i d e n t i c a l l y  zero because of t h e  cosine va r i a t ion  t h a t  
has i n  t h e  y-direct ion (eq. (10 ) ) .  It w a s  noted on page 9 t h a t  

eL 

- 6' 1 - P cos@) 

c ( 1 -  $) -;+ 

Because of t h i s  r e l a t i o n  a constant (-eP,b) can be added t o  
(18). Then 8L,b can be wr i t ten  as 

ep i n  equation 

12 



For t h e  spec ia l  case when 
equation (19a) s impl i f ies  t o  

P = 0 ( i . e . ,  uniform heat ing i n  the  fueled region) ,  

or i n  dimensionless form 

Thus, from equations (19)  t h e  
'P - 'P,b 

BLYb can be e a s i l y  evaluated from t h e  values of 
along t h e  boundary. 

Variational Solution 

A s  mentioned before,  an approximate solut ion for Bp - eP,b has been 
given i n  reference 2 f o r  y = 10. This so lu t ion  can be combined w i t h  equation 
(10) t o  provide an approximate closed-form a n a l y t i c a l  solution. 
f o r  BP from reference 2 i s  

The expression 

- 0.038328(X2 - 1) 2 (Yz - 1) 2 - 12.05(Y2 - 1) 3 - 4.9697(Yz - .I4] ( 2 0 )  

Equation (20) can be inser ted  i n t o  equation ( 1 9 )  t o  determine 
given c/b 
equation (15). 

eL,b f o r  a 
and then combined with equation (10) t o  y i e l d  t h e  solutio'n i n  

13 
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Numerical r e s u l t s  were car r ied  out f o r  two aspect r a t i o s ,  10 and 20. The 
important parameter i n  t h e  problem i s  t h e  dis tance between t h e  edge of t h e  f u e l  
loading and the  corner, d = b - e; t h i s  dis tance can be expressed i n  terms of 
the  channel spacing as d/Za. 
t o  0.5 f o r  y = 10 and 20. 
along t h e  heated region and f o r  a cosine v a r i a t i o n  with 

This parameter w a s  var ied i n  t h e  range from 0 
Results a r e  given f o r  both a uniform heat f lux 

P = 0.20. 

DISCUSSION OF RESULTS 

I n  f igures  3 and 4 are shown the  wall temperature d is t r ibu t ions  f o r  v a r i -  
ous widths of t h e  unheated areas  between t h e  edges of the  f u e l  loading on t h e  
broad s ides  and t h e  corners. The f igures  are f o r  two aspect r a t i o s ,  10 and 20. 
The w a l l  temperature var iable  t h a t  has been p l o t t e d  i s  nondimensionalized with 
respect t o  Q, t h e  heat  input t o  the  channel per un i t  length i n  t h e  flow d i rec-  
t i o n .  Hence, when t h e  d i f f e r e n t  curves i n  f i g u r e s  3 and 4 a r e  being compared, 
they  a r e  f o r  the  same t o t a l  heat addi t ion over t h e  channel cross sect ion.  The 
curves begin-at  the  center  of the  heated s ide ,  extend across t o  the  corner, and 
then extend down t o  t h e  center  of the  unheated short  s ide.  

When the  broad s ides  a r e  completely heated (d/Za = 0, c/b = l), the  w a l l  
temperature i s  a maximum at  t h e  corner. I n  t h e  corner region t h e  f l o w  veloci-  
t i e s  a r e  low; hence, t h e  imposed w a l l  heat f l u x  cannot be removed by convection 
as e a s i l y  as i n  the  regions away from t h e  corners,  where the  convective veloci-  
t i e s  a r e  much higher.  A s  a r e s u l t ,  the  corner w a l l  temperature r i s e s  t o  com- 

1 .20 

.I 

- . l o t  I , I I 
.5 

t+X = xla 
-.I 50 

.2 . 4  .6 .8 1.0 0 

clb dl2a 
1.00 0 

.20 

.97 \L, .97 .3 

-.OS O p  

-.I 0 
0 .2 .4 .6 

I .oo , A X - x l a  
.8 1.0 0 

Y =  ylb Y - ylb 

(a) Aspect ratio, 10. (b) Aspect ratio, 20. 
Figure 3. - W a l l  temperature distribution for uniform heating in  fueled region. 
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.40r 
dl2a 
0 

.2 

.3 

.4 

.5 

.6 

.7 

I l I I I k  X = xla 
.2 .4 .6 .8 1.0 0 -.zoo 

Y = ylb 

Figure 4. - Wall temperature distribution 
with cosine heat flux distribution in 
fueled region. Amplitude P, 0.2; 
aspect ratio, 10. 

pensate f o r  the poor convection, and t h i s  tem- 
perature increase enables the  heat t o  d i f fuse  
toward a region of better convection. 

For uniform heating over the e n t i r e  broad 
s ides ,  f igure  3 indicates  tha t  the  aspect r a t i o  
has a r e l a t i v e l y  s m a l l  influence on t h e  w a l l  
temperature d i s t r i b u t i o n s  and the magnitude of 
the  peak temperature. The i n s e n s i t i v i t y  of the 
peak temperature t o  y i s  possibly due to two 
compensating influences.  For ducts of high as- 
pect r a t i o ,  t h e  low-velocity regions adjacent t o  
the  s ide w a l l s  occupy only a s m a l l  f r a c t i o n  of 
the  t o t a l  cross sect ion,  and t h i s  f r a c t i o n  de- 
creases as y i s  increased. Consequently, the  
peak temperature tends t o  decrease because a 
s m a l l e r  por t ion of t h e  t o t a l  heat input has t o  
be diffused away from the low-velocity region. 
A s  y increases,  however, there  i s  an increase 
i n  the  heat-flow res i s tance  f o r  t h i s  d i f fus ion  
i n  the d i rec t ion  along the  broad walls, and t h i s  
res is tance tends t o  increase the  peak tempera- 
tu re .  As  a r e s u l t ,  the  peak temperature remains 
almost constant i n  the  range of large y con- 
sidered here. 

The most s ign i f icant  r e s u l t  i s  the s izeable  
influence exerted on t h e  w a l l  temperature d i s -  
t r i b u t i o n  by s m a l l  changes i n  the loca t ion  of - 

the  f u e l  loading. 
ner, the  f l u i d  i n  the region near the short  s ide w a l l s  receives less energy 
d i r e c t l y  from the  broad w a l l s .  This f l u i d  serves as a heat si& t h a t  helps 
car ry  away some of t h e  energy from t h e  adjacent heated f l u i d  region. From f i g -  
ure 3 it i s  evident t ha t  only a s m a l l  unheated region i s  necessary t o  form a 
s u f f i c i e n t l y  large heat sink t o  s h i f t  the  maximum w a l l  temperature t o  the  cen- 
t e r  of the  broad s ide.  When the  fueled region i s  uniformly heated, f o r  both 
y = 10 and 20 the  temperature along most of t h e  broad s ide i s  very nearly con- 
s t a n t  when there  i s  an intermediate spacing of d/2a = 0.3 between t h e  heated 
area and t h e  corner. 

A s  the  edge of the heated region i s  moved away from the cor- 

When the  heating i n  t h e  fueled region v a r i e s  i n  a cosine fashion with a 
l o c a l  heat f l u x  t h a t  i s  increasing toward the  corner, the  temperature var ia -  
t i o n s  become more pronounced as shown i n  f igure  4. These r e s u l t s  are f o r  an 
aspect r a t i o  of 10 and a heat f l u x  a t  the  edge of the  f u e l  loading tha t  i s  25 
percent greater  than a t  the center of t h e  broad side.  Because of t h e  increased 
heating i n  the  corner region, it i s  necessary t o  move t h e  f u e l  f a r t h e r  away 
from t h e  corner t o  achieve the most uniform temperature d i s t r i b u t i o n  possible.  
For no value of 
f o r  t h e  uniform heating case. The peak temperature appears at  t h e  center  of 
the broad s ide when d/2a 
with uniform heating i n  t h e  w a l l .  

d/2a does the  w a l l  temperature become as nearly constant as 

i s  greater than 0.65 instead of 0.35 as w a s  t h e  case 
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Figures 3 and 4 show t h a t  a t  some places along t h e  w a l l  t h e  value of 
Tw - Tb i s  negative, t h a t  i s ,  Tb i s  la rger  than  Tw. This negative value may 
seem t o  contradict  the  f a c t  t h a t  heat i s  flowing from t h e  w a l l  t o  t h e  f l u i d ;  
however, it must be r e c a l l e d  t h a t  Tb i s  an average value over the  e n t i r e  
cross section, while Tw i s  a l o c a l  value along t h e  wall. For example, i n  
f igure  3(a) ,  f o r  d/2a = 0, t h e  f l u i d  i s  a t  a high temperature near t h e  s ide 
w a l l s ;  t h i s  higher temperature r a i s e s  the  average f l u i d  temperature over the  
cross sect ion t o  a value higher than t h e  w a l l  temperature a t  the center of t h e  
broad s ide.  Since f i g u r e s  3 and 4 do not give any d e t a i l s  of the f l u i d  temper- 
a t u r e  d i s t r i b u t i o n  over t h e  cross sect ion,  some sample d i s t r i b u t i o n s  have been 
given i n  t a b l e s  I and 11. 

Some comments are necessary t o  r e l a t e  these r e s u l t s  t o  the  problem of 
fuel-channel design i n  a reac tor .  
s i s ,  laminar flow and no heat conduction i n  t h e  channel w a l l .  These assump- 
t i o n s  both tend t o  make t h e  computed temperature v a r i a t i o n s  more extreme than 
they  would usual ly  be i n  prac t ice .  I n  most cases t h e  flow would be turbulent ,  
which r e s u l t s  i n  a more uniform ve loc i ty  d i s t r i b u t i o n  over the  cross sect ion 
and a l s o  produces secondary flows t h a t  move cooler f l u i d  from the  c e n t r a l  core 
t o  the  corner regions.  

Two assumptions have been made i n  t h e  analy- 

These f a c t o r s  along with per iphera l  conduction i n  the  

0 0.2 0.4 I 0.6 0. 0 0.9 

-0.0831 -0.0735 -0.0451 0.00190 6.0664 0.101 
-.0%00 -.0704 -,0420 .00499 .0694 .lo4 
-.0710 -,0614 -.0330 .0140 .0702 .112 
-.a560 -SO472 - . O M 9  .0201 .0921 -124 
-SO380 -.0292 -.000866 .0461 -110 .141 
-00209 -.0193 +.00906 .0561 .la0 -151 
-.0240 -.0152 +.0131 .0601 -124 -155 
-- 0228 -. 0132 +. 0151 -0622 .126 .157 
-.0200 -so112 +.0172 .0642 .120 .159 -. 0187 -. 00911 +. 0192 0662 .130 .161 

TABLE 11. - DiTENSIONLESS TEM€'EF?A?eTTIE DISTRIBUTIONS OVER CHANNEL CROSS 

SECTION WITH UNIFORM HEATING IN FlTELED REGION 

0.94 

0.113 
.115 
.I22 
.133 
.149 
.15% 
.161 
.163 
.165 
.167 

(a) Aspect ratio, b/a, 10; dimensionless unheated width on broad side, d/2a, 0.1 

0.90 

0.122 
.124 

.137 

.147 

.153 

.155 

.156 

.157 

.150 

.E9 

I 

1.00 

0.123 
-125 

-13% 
.146 
-149 
-150 
-150 
.150 
-150 

-130 

Dimensionless 
short-side 
coordinate, 
x = x/a 

0.90 

.0.0696 
-.0691 -. 0671 
-.0643 
-.0620 
-.0613 -. 0612 - ,0612 -. 0611 
- .061.1 

0.0 
.a 
.4 
.6 
.a 
.9 
.94 
.96 
.90 
1.00 

1.00 

-0.0691 
-.0606 -. 0670 
-.0647 
-.0627 
-.0621 -. 0619 -. 061% -. 0618 -. OF18 

0.96 

0.118 
.120 
.126 
.136 
.149 
.15? 
.161 
.163 
.165 
.167 

Dimensionless 
short-side 
coordinate, 
x = x/a 

(b) Aspect ratio, b/a, 10; dimensionless unheated width on broad side, d/Za, 0.4 

0.0 
.2 
.4 
.6 
.a  
.9 
.94 
-96 
0 90 
1.00 

~~ 

Dimensionless temperature, (T, - 'I 
Dimensionless long-side Coordinate 

0 

0.142 
.174 
.268 
416 
.606 
. 7 u  
.754 
.775 
797 
.e19 

0.2 

0.104 
.137 
.231 
.379 
.560 
.673 
.716 
.730 
.760 
.701 

~~ 

0.4 

-0.00121 
+. 00201 
+. 0114 
+. 0262 
+.0452 
+. 0557 
+. 0600 
i. 0621 
f.0643 
+ .0665 

0.6 

-0.0200 
-.0176 -. 00019 
+. 00662 
+. 0256 
+. 0361 
+. 0404 
+.0425 
+. 0447 
+. 0469 

0.0 

-0.0479 -. 0449 -. 0356 -. 0213 -. 00292 
+. 00710 
+.a113 
+. 0134 
+. 0155 
+. 0177 

0.9 

-0.0657 -. 0636 -. 0571 -. 0465 -. 0321 
-.0233 
-.0194 -. 0174 -. 0153 -. 0131 

1 /( Q/& 1 

y = Y / b  

0.94 

.0. 0699 
-.0604 -. 0643 -. 0589 -. 0529 -. 0506 
- .0500 -. 0490 
-.0497 
-.0496 

0.96 

0.0705 
-.0690 -. 0664 
-.0626 -. 0591 -. 0579 
-.0576 
-.0575 -. 0575 
- D  0575 
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Dimensionless 
short -side 
coordinate, 
x = x/a 

0.0 
.2 
.4 
. s  
.8 
.9 
.94 
.96 
.98 
1.00 

TABLE 11. - Concluded. DIMENSIONLESS TEMPERATURF: DISTRIBUTIONS OVER CHANNEL CROSS 

SECTION WITH UNIFORM HEATING IN FUELED REGION 

(c) Aspect ratio, .b/a, 20; dimensionless unheated width on broad side, d/2a, 0.1 

0 

-0.0805 -. 0790 
-. 0746 
-. 0676 
- .0588 -. 0539 
-. 0519 
-. 0508 
- .0498 -. 0488 

0 . 2  

0.0711 -. 0696 
-. 0652 -. 0582 -. 0493 
- .0444 
-. 0424 
-. 0414 -. 0404 -. 0394 

Dimensionless temperature, (Tw - Tb)/(Q/4k) 

Dimensionless long-side coordinate, Y = y/b 

0.4 

-0.0428 -. 0413 
-. 0369 -. 0299 -. 0210 
- .0161 
-. 0141 
-. 0131 
-. 0121 
- .0111 

0.6 

+O. 00434 
+. 00586 
+. 0103 
+. 0172 
+. 0261 
+. 0310 
+. 0330 
i-. 0340 
+. 0350 
f. 0361 

0.8 

0.0703 
.0719 
.0763 
.0832 
.0921 
.0970 
.0990 
.loo 
.lo1 
.lo2 

0.9 

0.110 
.111 
.116 
.la2 
.131 
.136 
.138 
.139 
.140 
.141 

0.94 

0.126 
.127 
.131 
.137 
.146 
.151 
.153 
.154 
.155 
.156 

0.96 

0.133 
.134 
.138 
.144 
.152 
.156 
.158 
.159 
.160 
.161 

0.98 

0.138 
.139 
.142 
.147 
.154 
.156 
.160 
.161 
.162 
.163 

Dimensionless 
short-side 
coordinate, 
x = x/a 

0.0 
.2 
.4 
. 6  
.8 
.9 
.94 
.96 
.98 
1.00 

(d) Aspect ratio, b/a, 20; dimensionless unheated width on broad side, d/2a, 0.4 

0 

0.0180 
.0196 
.0241 
.0312 
.0403 
.0453 
.0474 
.0484 
.0495 
.0505 

0.2 

0.0149 
.0164 
.0209 
.0281 
.0372 
.0422 
.0443 
.0453 
.0463 
.0474 

Dimensionless temperature, (Tw - Tb)/(Q/4k) 
Dimensionless long-side coordinate, Y = y/b 

0.4 

0.00533 
.00688 
.0114 
.OM5 
.0276 
.0327 
.0347 
.0358 
.0368 
.0378 

0.6 

-0.0106 
-, 00906 - .00454 
f . 00259 
f . o n 7  
+. 0167 
+. 0188 f. 0198 
+. 0209 f. 0219 

0.8 

0.0330 -. 0314 
-. 0269 -. 0198 
-. 0107 
-. 00565 
-. 00359 -. 00255 
- .0004? 3 
- .00151 

0.9 

-0.0470 -. 0455 -. 0412 
-.0253 -. 0204 
-. 0173 
-. 0152 

-. 0343 

-. 0183 
-. 0162 

0.94 

-0.0533 
-. 0521 
-. 0485 
-. 0427 -. 0349 -. 0304 
-. 0284 -. 0274 -. 0264 -. 0254 

0.96 

0.0557 -. 0549 
-. 0524 -. 0485 
-. 0437 -. 0410 
- .0400 
-. 0394 
-, 0389 
-. 0384 

0.98 

0.0563 
-. 0558 -. 0544 
-. 0526 
-. 0507 -. 0500 -. 0499 
- .0498 
-. 0498 
-. 0498 

0.142 

.151 

.153 

.153 

.153 

.153 

.153 

- 

1.00 

-0.0550 
- .0547 
-. 0539 -. 0528 -. 0518 
-. 0515 
-. 0515 
-. 0515 
- .0514 
-. 0514 

_ _  

w a l l s  w i l l  tend t o  reduce the  temperature peak i n  t h e  corner f o r  s m a l l  d/Za. 
I n  most cases the per ipheral  conduction w i l l  be enhanced by the  f a c t  t h a t  t h e  
s ide walls a r e  thicker  than t h e  f u e l  p la tes .  To ensure tha t  t h e  temperature 
peaking w i l l  be s m a l l ,  t h e  f u e l  can be moved a short  distance away from t h e  
corners t o  a d/2a of about 0.3. There i s  a danger i f  d/2a i s  made too  
large t h a t  t h e  hot spot w i l l  be moved t o  t h e  center of the  broad s ide  and may 
become excessive there .  

To summarize, t h e  r e s u l t s  have shown tha t  t h e  wall temperature d i s t r i b u -  
t i o n s  axe qui te  sens i t ive  t o  t h e  width of the  unfueled region 
t h e  l imi t ing  case where t h e  flow i s  laminar and w a l l  conduction i s  absent, it 
i s  only necessary to remove t h e  f u e l  a very short  distance from the corner t o  
avoid temperature peaks there .  
heat f l u x  i s  nonuniform, the  maximum near the  corner being 25 percent greater  
than a t  the p l a t e  center.  

d/2a. Even f o r  

The preceding conclusion i s  t r u e  even when the  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, May 28, 1964 
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APPENDIX - NUMERICAL METHOD OF SOLVING THE El'ERGY EQUATTCR 

Outlined here is  a method f o r  deriving the  f i n i t e  difference equations, 
t h e i r  restatement i n  matrix notation, and t h e  der ivat ion of the  overrelaxation 
f a c t o r  t h a t  gives the  most rap id  convergence of t h e  i t e k a t i v e  process. 
of t h i s  overrelaxation method g r e a t l y  reduces the  computational time as com- 
pared with more conventional i t e r a t i v e  procedures. 

The use 

The quarter sec t ion  of t h e  channel cross sec t ion  i s  divided by a gr id  net-  
work i n t o  N2 rectangular  increments where A = (Ax/.) = (&/b) = 1 / N  and 
nA = ( C / b ) .  Then a difference equation i s  derived f o r  each node of the  gr id ,  

r e s u l t i n g  i n  ( N  + 1 ) 2  

development of t h e  difference equations i s  
presented f o r  a t y p i c a l  i n t e r i o r  point and 
a point a t  t h e  center  of t h e  heated bound- 
ary.  The equations f o r  t h e  other nodes 
a r e  derived i n  a similar fashion. The 
discussion i s  l imi ted  t o  t h e  case where 

equations i n  
3 ( N  + 1)2 unknowns. I n  t h i s  appendix t h e  

4 2 

1 the  heating i s  uniform i n  t h e  fueled r e -  

(a) At an in te r i o r  point. 
gion, but t h e  extension t o  var iable  heat-  
ing i s  indicated a t  the  end. 

x - a  o ,'r3 .4 F i n i t e  Difference Equations 

'x r4 I n  f igure  5(a) ,  point o is  an i n t e -  . r i o r  node of t h e  mesh with 1, 2, 3, and 4 '- rl 
1 as neighboring nodes; Ro i s  t h e  shaded 

y =  0 rectangular region associated with 
point 0. The p a r t i a l  d i f f e r e n t i a l  equa- 
t i o n  ( 4 )  is  integrated over Ro by using 
Green l s  Theorem, which states in general 

(b) At t h e  center of t h e  heated wall. 

Figure 5. -Typical  nodes used in der ivat ion of f in i te-di f ference 
eauations. 

where the  r i g h t  s ide i s  t h e  l i n e  i n t e g r a l  of t h e  normal der ivat ive of 0 
around the  boundary r. Subst i tut ing equation ( 4 )  i n t o  equation (Al) gives 

Approximating the  i n t e g r a l s  by 

18 



t he  f i n i t e  d i f fe rence  a.nalog of equation (A2)  can be placed i n  the  form 

I n  ffgure 5 (b ) ,  point 0 i s  the  corner node of the  network a t  the  center  of 
t he  heated region. The procedcre j u s t  out l ined i s  applied except tha t  t h e  
boundary conditions a r e  used on F2 and r3. For uniform heat  f lux ( P  = 0)  
t h e  boundary conditions a re  

These conditions r e s u l t  i n  t h e  r e l a t i o n  

n + -$el + e4 
1 + y 2  

eo = 

Matrix Notat ion 

The equations f o r  a l l  the  nodes can be wr i t t en  concise ly ' in  matrix nota- 
t i o n  as 

where R i s  a pa r t i t i oned  matrix of order ( N  + 1)2 

R =  

-B 

2A 

-B 

0 

0 

0 

-B 

2A 

0 

0 

2A 

-B -B A 9 
wi*h submatrices of order N + 1 
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(A581 

2 -Y 

(r2 + 1) -Y 2 0 0 

-Y 2 2 ( r 2  + 1) -Y 

0 -Y 2 2(y2 + 1) - 0 

0 0 0 . 2(y2 + 1) 

0 2 

A = (  . . . 2 

0 0 0 -Y 

B = diag (1, 2, 2, - - 0 ,  2, 1) (A5b) 

The components i n  G a r i s e  from t h e  boundary conditions such as t h e  term y/n 
i n  equation (A3b), while t h e  terms i n  U 
(4), which gives terms such as y A2uo/E i n  equation ( A 3 a ) .  The terms G 
and U a r e  pa r t i t i oned  conformably with R, which gives 

come f r o m t h e  l e f t  s ide  of equation 

where gi and ui are ( N  + 1) x 1 and a r e  given as follows: 
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u1 = 

2 ui = -2 n y 

0 

U[N n,(i - 1)n]F 
U[N - l)n,(i - ~ ) A ] / E  

. . . . . . . . . . .  
u [ n , ( i  - 1)n]/E 

The matrix R receives i t s  par t icu lar  form by numbering t h e  mesh points  from 
t o p  t o  bottom i n  columns s t a r t i n g  with t h e  f i rs t  column a t  t h e  l e f t  of the 
rectangle.  

I t e r a t i v e  Procedure 

For the  i t e r a t i v e  procedure it i s  necessary t o  decompose R as follows: 

R =  $ -  g - g T  
( t h e  superscr ipt  T denoting transpose) where 

.$= diag(A, 2A, - - -, 2A, A) 

and 
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The i t e r a t i v e  scheme i s  defined by 

0 0 y 
0 

0 

which i s  applied as follows: 

(1) G + U and the  mth i t e r a t e  f o r  - 8 a t  a l l  the  mesh points 
(do) - i s  an i n i t i a l  G e s s ) ,  a r e  given. 

The appearance of 
no d i f f i c u l t y  since- 
i s  car r ied  out one column after the  other from l e f t  t o  r i g h t ,  each column of 
- 8 ' s  
l i n e  method. 

i n  t h e  r i g h t  s ide of the  equation i n  s tep  ( 2 )  causes 
i s  s t r i c t l y  lower t r iangular  by blocks. The i t e r a t i o n  

being computed simultaneously; hence, t h i s  i t e r a t i o n  process i s  ca l led  the  

Overrelaxation Factor 

The value of w giving t h e  f a s t e s t  convergence of t h e  i t e r a t i v e  process 
i s  usual ly  given by 

where 
I n  the  present case, however, C has eigenvalues +1 so t h a t  the i t e r a t i v e  
process would f a i l  t o  converge f o r  w calculated from p(C). 

C = $-I(.$? + gT) and p = p ( C )  i s  the  s p e c t r a l  radius  of C ( r e f .  8 ) .  

The occurrence of t h e  eigenvalue +1 i s  a r e s u l t  of the  f a c t  t h a t  solut ions 
of Neumann problems are determined only up t o  an addi t ive  constant. 
-1 was  introduced by t h e  decomposition of R .  Since C i s  two-cyclic ( r e f .  9 ) ,  

The value 
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def la t ion  of C by t h e  eigenvalues +1 yie lds  a matrix C '  t h a t  i s  again two- 
cycl ic  and t o  which t h e  Young-Frankel theory of successive overrelaxation may 
be applied.  

If A1, A2, A3, ' - - are t h e  eigenvalues of C,  

1 = \All = Ih2[ =. Ih31 = / A 4 [  > l A s l  - - - 

Then 0, 0 ,  A,, A,, - - a r e  t h e  eigenvalues of C ' .  Let V1, V2, - - - be 
the  associated eigenvectors, that  i s ,  C V i  = A i V i .  Components of the  e r r o r  may 
be ignored along Vl, since t h i s  may be regarded as the  addi t ive constant r e -  
f e r r e d  t o  previously- components of the  e r ror  may be ignored along 
s ince averaging @(mj with C @ ( m )  w i l l  el iminate t h i s  e r ror .  
of q,, therefore, i s  based upon A3; that  i s ,  

Vz a l s o  
The computation 

The eigenvalues of C a r e  given by 

i f  N i s  s u f f i c i e n t l y  large,  A3 = cos(fi/N) and 

2 
ob = 1 + sin(fi/N) 

Numerical experiments v e r i f i e d  the optimm character of t h i s  number. 

Remarks 

Early i n  t h e  solut ion it w a s  noticed t h a t  the res idua ls  (e .g . ,  f o r  eq. 

+ yzel + 84 n 
(A3b) the  r e s i d u a l  i s  defined t o  be Bo - 
t i o n s  achieved a constant value throughout t h e  mesh and remained a t  t h a t  value 
f o r  every i t e r a t i o n  thereaf te r ;  however, t h e  value of kept increasing. 
The reason f o r  the  d r i f t i n g  w a s  t h a t  t h e  E used t o  normalize t h e  u at  each 
node w a s  evaluated by using the  series i n  the denominator of equation ( Z ) ,  
which i s  obtained from an a n a l y t i c a l  in tegra t ion  of the  ve loc i ty  over t h e  cross 
sect ion.  The use of t h e  s e r i e s  form of E introduces an  inconsistency i n  t h e  
system of equations (A4) i n  which i n t e g r a l s  have been approximated by t h e  
t rapezoidal  r u l e ;  hence, by using t h e  t rapezoidal  r u l e  t o  evaluate Ti, the  
d r i f t i n g  w a s  eliminated. 

) a f t e r  several  i t e r a -  
1 + r2 
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When passing from t h e  constant heat  f l u x  case t o  t h e  cosine var ia t ion ,  t h e  
boundary condition corresponding t o  equation (5) must be wr i t t en  by using t h e  
t rapezoida l  r u l e  t o  compute t h e  normalizing f a c t o r  i n  t h e  denominator, t h a t  is ,  

whose l i m i t  as A approaches 0 i s  t h e  boundary condi t ion i n  equations ( 6 ) .  
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